{{model.bookDetails.title}}

ebook luisterboek
{{model.bookDetails.author}} Serie: {{model.bookDetails.series}} ({{model.bookDetails.seriesNumber}}) | Taal: {{model.bookDetails.language}}

{{getBindingWithHiding()}}

€ {{model.bookDetails.refPriceMaxText}}

€ {{model.bookDetails.priceText}}

€ {{model.bookDetails.mainCopy.regularPriceString}}

€ {{model.bookDetails.priceText}}

Niet leverbaar



{{model.bookDetails.deliveryMessage}}
Analytic Curve Frequency-Sweeping Stability Tests for Systems with Commensurate Delays

{{getBindingWithHiding()}}

€ {{model.bookDetails.priceText}}

Dit artikel kunt u momenteel niet bestellen. Mogelijk is het wel op voorraad bij een van de aangesloten boekhandels. Bekijk de winkelvoorraad hieronder ↓
Direct te downloaden
Uw bibliotheek altijd beschikbaar in uw account
Gemakkelijk synchroniseren met geselecteerde apps
Nieuwe boeken gratis bezorgd vanaf € 17,50 naar NL*
Altijd de laagste prijs voor nieuwe Nederlandstalige boeken
Ruilen of retourneren binnen 14 dagen
Koop lokaal, ook online!
Op voorraad bij: {{model.bookDetails.physicalShopsWithStock[0].Name}}
{{shop.name}}
Bekijk winkelvoorraad
Ik wil advies
Vraag de boekhandel
Prijsvoordeel *
*
{{model.bookDetails.mainCopy.priceDescription}}

In this brief the authors establish a new frequency-sweeping framework to solve the complete stability problem for time-delay systems with commensurate delays. The text describes an analytic curve perspective which allows a deeper understanding of spectral properties focusing on the asymptotic behavior of the characteristic roots located on the imaginary axis as well as on properties invariant with respect to the delay parameters. This asymptotic behavior is shown to be related by another novel concept, the dual Puiseux series which helps make frequency-sweeping curves useful in the study of general time-delay systems. The comparison of Puiseux and dual Puiseux series leads to three important results:an explicit function of the number of unstable roots simplifying analysis and design of time-delay systems so that to some degree they may be dealt with as finite-dimensional systems;
categorization of all time-delay systems into three types according to their ultimate stability properties; and
a simple frequency-sweeping criterion allowing asymptotic behavior analysis of critical imaginary roots for all positive critical delays by observation.


Academic researchers and graduate students interested in time-delay systems and practitioners working in a variety of fields - engineering, economics and the life sciences involving transfer of materials, energy or information which are inherently non-instantaneous, will find the results presented here useful in tackling some of the complicated problems posed by delays.
{{property.Key}}
*
*
*
{{review.reviewTitle}}
{{review.createdOn | date: 'dd-MM-yyyy' }} door {{review.reviewAlias}}
{{review.reviewText}}
Meer Recensies
Lees minder
Geen recensies beschikbaar.

{{webshopCopy.binding == null || webshopCopy.binding == '' ? 'Prijs' : webshopCopy.binding}} € {{webshopCopy.priceInCentsText}}

Bezorgen:

Prijs € {{usedCopy.priceInCentsText}}

Conditie: {{usedCopy.qualityName}}
{{usedCopy.copyDetailDescription}}
Levertijd:
Leverbaar bij:
{{usedCopy.shop.name}}
pro-mbooks3 : libris